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Nanobeam Processes and Development of Nanomaterials
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NanoNano MaterialsMaterials
C60 etc.,C60 etc., 19851985

Carbon Carbon NanotubesNanotubes 1991 1991 IijimaIijima

Size Control, Spatial Distribution, Structure, etc.Size Control, Spatial Distribution, Structure, etc.

Radiation Induced Reactions in Polymers Induced IonsRadiation Induced Reactions in Polymers Induced Ions
The size of the field depends on

Reactive intermediates
Density
Stability

Linear energy transfer: LET
Structure of a molecule (Mw, Stiffness, etc.)

Very good size control and mass production



Ion Track Structure in Ion Track Structure in PolysilanesPolysilanes

PolysilanesPolysilanes
»»Silicon Analog of PolyethyleneSilicon Analog of Polyethylene
»»11--D Analog of Crystalline D Analog of Crystalline SiSi

PropertiesProperties
ElectroluminescenceElectroluminescence
PhotoconductivityPhotoconductivity
11--D Quantum wiresD Quantum wires
Radiation SensitiveRadiation Sensitive



Uniformity of  Uniformity of  NanoNano--WiresWires

Figure.  A SEM image of rod-like nano-wires on a Si substrate. The nano-wires were formed by the 450 MeV
128Xe23+ irradiation to a PS3 thin film (200 nm thick) at 1.6 x 1012 ions/cm2. The film was developed by hexane,
and heated up to 523 K for 0.5 h after irradiation. 



200 nm200 nm(a)(a) (b)(b) (c)(c)500 nm500 nm 1.0 1.0 µµmm

Figure.  AFM images of nano-wires on a Si substrate with a variety of special resolutions. The nano-wires were 
formed by the 450 MeV 128Xe23+ irradiation to a PS1 thin film (0.40 mm thick) at 1.7 x 1010 ions/cm2.  

Uniform Formation of Uniform Formation of NanowiresNanowires
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A kinetic trace in wide dynamic range can be measured by one pulse irradiation
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History of pulse  radiolysis at ISIR

UV, Vis 1994
NIR, 1995
Low-temp, NIR, Vis, 1997
IR, 1998
UV, Vis, ns-ms, 2001

ns system ps system (stroboscopic)

Laser-linac synchronized, 1995
Vis, 1998
Pulse compression, 1998
Jitter compensation, 1999
Improvement of S/N ratio, 2001
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Sub-Half-Micron Lithography for ULSIs edited by K. Suzuki, S. Matsui and Y. Ochiai

Miniaturization trends of DRAM pattern size and development of 
optical lithographic tools. DRAM capacity is given in bits.
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What limits the resolution of EB lithography

Beam size(< 1 nm)

Forward- and back-
scattered electrons

Intermolecular forces 
during development

Reaction 
mechanisms

Effects of developer, 
Development conditions

Polymer size effects
Cluster size effects

Acid diffusion

EB can be focused less than 1 nm. However, technical barriers exist 
around 30-50 nm for mass production type resist pattern. Why?
More important problem is critical dimension (CD) and Line edge 

roughness (LER).

The limit of the resolution of the high sensitive EB resists is key 
problem for the future lithographies (both EB and EUV lithograph). 

It is also essence for the development of nanotechnology.
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Translation of picosecond temporal 
data to nanometer spatial data
（So far, available only at ISIR）

Reaction control in nanospace --Time space translation
A. Saeki et al. Jpn. J. Appl. Phys. 41 (2002) 4213.
It is essential to minimize the displacement between energy deposition point and reaction point.

Experimental data obtained in 
the femtosecond pulse 
radiolysis and simulation

After exposure to EB

Change of distance between electron and 
cation radical generated by electron beam 
irradiation. 

Spatial separation between electron and 
cation radical causes the displacement 
between energy deposition point and 
reaction point. For the nanotechnology, it 
is essential to decrease the displacement.
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Electron dynamics in early processes of radiation chemistry









∇+∇∇=

∂
∂ V

Tk
wwD

t
w

B

1

w : Probability density of electrons
kB : Boltzmann constant
V : Coulomb potential
T : Absolute temperature
D : Sum of diffusion coefficient

Smoluchowski equation









−=

00
0 exp1),(

r
r

r
rrf

Initial distribution function

r : Distance between radical cation
and electron

r0 : Initial separation distance 
on average

Electron with 
excess energy

+
- -

Thermalization

Diffusion
Coulomb 

Force
Radical Cation

Ionization

Electron
Geminate Ion Pair



0.00

0.05

0.10

0.15

0.20

0 5 10 15 20 25 30

Su
rv

iv
al

 p
ro

ba
bi

lit
y 

(/n
m

)

Cation-Electron Distance [nm]Cation

Electron0ps

30ps
100ps 300ps

Distribution of Electron
r0 = 6.6 nm
D = 6.4 x 10-4cm2/s
ε = 2.012

0

0.1

0.2

0.3

0 5 10 15 20 25 30

Su
rv

iv
al

 p
ro

ba
bi

lit
y 

(/n
m

)

Cation

Electron0ps

3ps
10ps 30ps 100ps

Cation-Electron Distance [nm]

Distribution of Electron
r0 = 3.2 nm
D = 2.8 x 10-3cm2/s
ε = 2.284

n-Dodecane Benzene



OH

CH 2

CH 3

O OH

R

O O

R

OH

O
O

R

O
O

R

OO O

O OO O

O

O

R R' O O

Rf

OO O

CF 3
F3C O O

g / i KrF ArF F2

Noboｌak ｒesin

Ploy(p-hydroxystyrene)

Cyclic olefine polymer
Alicyclic groups

F polymer

Poly(acrylate
-hydroxystyrene)

Ploy(methacrylate)

Ploy(norbornene)

Ploy(norbornene
- maleic anhydride)

Ploy(methacrylate)

Ploy(norbornene
- maleic anhydride)

Aromatic ｒing

Base Polymers for Lithographies



Ionization

Acid diffusion

Acid generation

Electron beam, X-ray, EUV

Base polymer

Acid generator

Counter anion

Proton

Electron

Acid generation mechanism Acid generation mechanism –– Ionization channelIonization channel

Proton transfer

Proton generation



Formulation
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The reaction of acid generators with electrons:

w : probability density of electrons
k : rate constant of reaction of acid generator with electrons
C : concentration of acid generators
R : effective reaction radius

Effective reaction radius of acid generators:

Electron dynamics in resist materials:
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The distribution of probability density of 
counter anions in the x-y plane. The 
coordination of ionization point is the 
origin. 
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Conclusion 2

The elucidation of the reaction mechanisms of 
chemically amplified resists is very important in the 
development of the resists with at least both high 
sensitivity and high space resolution. Our findings 
were integrated to a simulation model. This model is 
applicable to exposure souses whish have higher 
energy than ionization potential of resist materials. 
The probability density of acid distribution around 
ionization point was simulated with a typical 
parameter set.


